
正方形面板区域(上图白色部分)是从一介电质结构的顶层面板(上图黑色部分)蚀刻而来的,此介电质结构的另一面(底部)有一接地平面。补片天线本质上是一矩形双极。使用高介电质常数的材料来减少天线的大小。此天线在任何环境下,都很容易安装,它能轻易地安装在车辆或飞机的表面上。补片天线是一种相当窄频的天线。在正方形结构里,一个线性的极化波向外辐射。
有许多方法可以达到馈线与阻抗匹配。补片可与一个四分之一波长的高阻抗线匹配,或一条50奥姆线可延伸到补片的内部,如下图所示。阻抗在中心点是最小的,且阻抗值是跟着轴长的增加而增加,所以尺寸的选择是以能得到支持50奥姆的点来决定的。
另一种馈线匹配法是将一同轴线的中心导体透过介电质,在适当的阻抗点接触到补片的底部。补片的中心是经过此结构中的一个过孔(via)接地的,如下方的左图与中图所示。
当两边尺寸不同,形成长方形时,补片会产生圆形极化波,如上方的右图所示。这是交叉式双极数组的模拟,而馈线是延着中心点到角落的对角线与补片连结着,为了达到阻抗匹配,必须为补片选择适当的尺寸。
孔径天线
孔径天线包括:
*开放式波导辐射器
*喇叭形(horn)与其他形状的波导辐射器
*喇叭形反射器天线
孔径天线的响应场型与孔径所产生的「远场绕射(far field diffraction)」场型相同。远场场型的近似角宽度是θ = λ/D。一个孔径天线的模型是:在一个无限导电或吸收平面上有一直径D的孔径,且有一平面波由一侧射入。绕射场型越过很大的距离投射在平行面上,将会有一个中央点,其直径是由场型的角宽度公式决定。此模型如下图所示。
这是假设孔径的照射度是平均分布的(uniform)。更精确地说,远场场型是分布在孔径各处的电场之傅立叶变换,并且考虑到孔径平面各处之振幅及相位的变动。
一个波导管的开口端变成了一个非常高效率的辐射器,如下图。
增加孔径的大小(改变喇叭形状)可以增加波导天线的增益。圆形喇叭也被使用。参见下图。
利用圆形极化器可制作一个圆形的喇叭天线,它可以辐射圆形的极化场型。
这个装置使用一个传输型极化器,把在长方形波导管中的线性极化,在正方形波导管输出端转换成圆形极化。极化器结合了一种转换功能,从输入的长方形波导管(线性极化)转换成在 45° 位置的正方形波导管。两个相等且互相垂直的线性极化波,在正方形波导管内发射;经由设定波导来使其中一个波有不同的相位速度,一个 90°相位关系在极化器全长四周被建立起来。现在它就具有圆形极化场型,且从圆形喇叭中辐射出去。
如下图所示是一个有趣的天线之横切面,是将一个喇叭天线当成一个抛物面反射器(parabolic reflector)的一部份。
反射器的每一面被包在喇叭天线的延伸面里(在上图中,开口大的部位),变成类似盘子(dish)的形状,导致天线的旁波(side lobe)变得很小。Penzias与Wilson就是利用这种天线在贝尔实验室里,观察宇宙的背景微波(并赢得诺贝尔奖)。
下面列出了各式天线的近似指向性(增益)和远场边界以供参考:
反射器天线
反射器天线包括:
*平面反射器
*抛物面反射器
*球形反射器(例如: Arecibo)
*多波束(multibeam)反射器天线
*使用电流天线做为反射器
可将一个电流天线(例如:一个双极天线)放在一个导电平面前,来产生一个定向天线。 当间距为 0.1-0.3λ 时,一个 λ/2 双极天线的增益大约是 6 dB(这是 6 dBd的意思,也就是 8 dBi ,因为一个双极天线的增益是 2 dBi)。
一个角落反射器(corner reflector)增加了增益值。当双极天线的间距为 0.5λ时的增益是 10 dBd;而当间距是 1.5λ时,增益是 13 dBd。利用抛物面圆柱状的反射器可以得到额外的增益,这种抛物面圆柱状的天线经常在移动电话基地台见到。
抛物面反射器天线
曲面的反射器,特别是抛物面反射器可提供更大的增益。抛物面反射器天线的增益 ,本质上是与同直径之孔径天线相同的。
上图显示了在设计抛物面天线时,所需面对的取舍问题:弧面对应的夹角和馈线的指向性。如果给定一个直径与焦距长度,对弧面直径D所对应的夹角而言,此馈线场型太宽了,将造成能量大量溢出,导致增益减少且天线温度增高。反之,如果所对应的夹角大于馈线的「半功率波束宽度(Half Power Beam Width;HPBW)」,将会导致照射度不一致,且在边缘部位会逐渐减弱,并伴随着辐射效益与增益的损失。
理想的做法是,将馈线的指向性和抛物面天线所对应的夹角相互匹配,这就是抛物面反射器的比率公式 f/D。因为减少能量的溢出量,故它可能会降低 T 多过于降低 G,因而增加了 G/T值,常见的选择是在抛物面天线的边缘,降低照射度10 dB。
反射器馈线的结构
反射器必须在天线的焦点处提供讯号,其方法是利用任何的电流式或孔径式的辐射器。馈给的位置可以在主焦点处,或者在那儿可以有一个副反射器,用来减少屏蔽(blockage)之所需以及免除要在焦距处支持馈线的复杂度。实际的馈给位置是位在抛物面的中央,最大的优点是减少馈线的损失,并支撑重量。
,RF电路设计讲座(1)射频、微波天线技术探微