(5 ) 减小杂散电磁场对电路的干扰。电磁场干扰也是影响S/N 的主要因素,因而,高质量的前置放大器应采用电磁干扰小的电源变压器,栅极信号引线应尽量短,并使用屏蔽线。输入级电子管最好加上屏蔽罩。灯丝引线要绞合起来,并远离栅极。
(6 ) 避免地线回路的干扰接地不当的放大器。通过地线回路窜入栅极回路的各种交流干扰对S/N 的影响可能比其他因素更大,应引起高度重视。对于较为简单的放大器来说,避免地线干扰最有效的方法是采用一点接地,即输入信号与栅极电阴、阴极电阴、阴极电容的接地点焊在一点上,然后与电源滤波电容的接地点连接,再与机壳相联。对于多级放大器,可先将各级的接地点分别汇集于一点,再按从前级到后级的顺序将各级的接地点与电源地连接起来,然后再与机壳相连。与机壳相连的最佳点可能是电源地端或输入地端,究竟哪个更好一般由实验确定。
⒋确保阻容件有足够的散耗功率或耐压。前置放大器电子管的工作电流虽只有几个毫安,但屏极电源电压一般都在200V以上,功耗仍相当可观。故应保证电路中所用电阻的散耗功率和电容的耐压足够大。选用时,两者的取值一般应为实际功耗和所加电压的两倍以上。否则,可靠性将降低。
二、三极管前置电压放大电路的分析计算
三极管电压放大电路通常由一级或多级阻容耦合电压放大电路和阻抗变换电路组成,有的还加有负反馈电路。掌握这些基本电路的原理和计算方法,便可根据实际需要设计出种各样的前置放大器。
电压放大电路常用的有共阴极放大电路和SRPP放大电路。下面就其工作原理与计算方法两方面分别简单介绍。
A) 阻容耦合共阴极放大电路
共阴极放大电路可以由三极管或五极管构成,但五级管构成的共阴电路由于噪声较大,一般只用于后级放大器。
① 工作原理
当在电子管栅极加入信号电压后,便使屏极回路产生肪动的电流ia,ia流经Ra时,在Ra上产生电压降Ua,这就是被放大了的信号电压。其振幅的相位变化与ia相反。当屏压从高变低时,电容Ca放电;屏压从低变高时,电容Ca充电。充、放电电流注经RL时,在RL上产生的电压降U。便是电路的输出信号电压。若放大器由两级共阴电路构成,则RL便是第二级电子管的栅极电阴Rg,输出信号电压U。将加入第二级电子管栅极作进一步的放大。
② 计算方法
作为高保真的电子管放大器,我们希望其频响尽可能宽些。电子管的低频响应主要由输入耦合电容Cg、输出耦合电容Ca及阴极旁路电容Ck决定,其中Cg与Ca取值应满足下式要求,即:
Cg(Ca)≥1/2πfLRg
式中,fL放大器的下限频率,一般取20Hz,Rg为栅极偏置电阻的值,计算Ca时,Rg为后面一级电子管的栅极偏置电阻的值。阴极电阻Ck则可用下式估算:
Ck≥(3~5)/2πfLRk
而高频响应主要由负载电阻R’a。及分布电容Co决定。其高端截止频率为:
fH =1/2πR’aCo
可见Co或R’a越小,频响越宽。其中Co的值视所用电子管及电路形式而有一定差异,它约等于屏极输出电容和下一级栅极输入电容的和。因而应选用输入、输出电容均较小的电子管,并且应尽可能减小由布线形成的分布电容。而R’a较时,虽对高频响应有利,但也不能过小,因为电子管的电压放大倍数KO=SR’a,R’a较小时,KO在数值上等于内阻Ri、Ra及下一级栅极电阻的并联值,即:
1/ Ugm2=1/Ra+1/Ri+1/R’a
Ra的值可在(50~500)KΩ之间选取,而R’a的最大允许值一般为:
R’a=Ri·τa/(CoRi—τa)
式中,τa为电子管屏极时间常数,其值为: