标签:防雷接地规范,防雷接地系统,防雷接地方案,http://www.5idzw.com
智能化大厦综合布线系统的防雷与接地,http://www.5idzw.com
(5)监控系统的云台、防雨罩必须就近接地。
2.5 PDS雷电过电压保护器件的选择
2.5.1 配电系统的雷电过电压保护器件的选择
(1)电源用雷电过电压保护器件的选择,雷电过电压保护器件包括:
浪涌保护器的分类:根据IECl312-1(通则)、IEC-1312-3(浪涌保护器的要求)、IECl643-2(低压系统的浪涌保护器)及ITU-TK36(保护装置的选择),浪涌保护器(SurgeProtectiveDevices简称SPD)可由气体放电管、放电间隙、MOV、SAD、齐纳二极管、滤波器、保险丝等元件混合组成。国内外各种类型SPD产品一般都由这些元器件组成。浪涌保护器可分为三类:电压开关型SPD(Voltage Wwitehing Type SPD); 限压型SPD (Voltage LimitingTypeSPD);组合型SPD(CombinationTypeSPD)。
雷击电流型SPD(归属于电压开关型SPD类):是安装在通信局(站)建筑物外雷电保护区0区的SPD,可最大限度地消除电网后续电流,以疏导10/350μs的模拟雷电冲击电流(无论这些电流是远处的雷电过电压还是由直击雷引起的)。雷击电流型SPD一般由高性能火花隙组成,它的特点是放电能力强,但残压较高,通常为2000~4000V,检验测试器件采用一般10/350μs的模拟雷电冲击电流波型。
限压型SPD:限压型SPD一般由氧化锌压敏电阻 (MOV)及半导体放电管(SAD)等元器件组成,是安装在雷电保护区建筑物内的SPD,可疏导8/20μs的模拟雷电冲击电流,在过电压保护中具有逐级限制雷电过电压的功能,检验测试器件的残压一般采用8/20μs的模拟雷电冲击电流波型。
混合型电源SPD:半导体放电管(SAD)与MOV组成的混合型电源SPD。
半导体放电管主要技术特征包括:对浪涌电压的响应速度非常快,与原有的保护单元相比,对陡峭的雷击电压可以充分抑制,这样使原来的保护单元多级保护设计变得简单,而且更加小型化;利用半导体内部的电子和空穴原理进行工作,不存在劣化问题,保养简单,使用寿命增加;用硅PN结的工作原理设计半导体放电管,其双向、单向、开关动作均能自由、精确地设计出来,一致性较好。因此,采用半导体放电管(SAD)与MOV组成的混合型电源SPD,可能利用SAD对浪涌电压的响应速度非常快等特点,在一般雷电过电压的保护时,由SAD承受浪涌电流,其标称放电电流可达10~20kA;若遇到较大量级的雷电过电压,第一级由SAD组成的电路保险管可自动断开,由第二级MOV作为雷电过电压保护,作为混合型电源SPD,其MOV能承受冲击通流能量一般大于100kA。
MOV与滤波器组成的混合型电源SPD:根据一个典型的沿配电线路侵入的雷电波,其浪涌波形是符合傅立叶变换的,其大部分能量分量具有相对较低的频率,采用MOV与滤波器组成的混合型电源SPD在同一测试条件下,可以具有比单一并联的SPD更低的残压。RFI滤波器可对150kHz~20MHz的雷电波进行滤波;标称放电电流40kA时残压可小于1000V。
(2)SPD技术参数和名称术语:
标称导通电压:在施加恒定直流lmA电流的情况下,MOV启始动作电压。
SPD的标称放电电流:用来划分SPD等级,具有8/20μs、10/350μs模拟雷电电流冲击波的放电电流。
冲击通流容量:SPD不发生实质性破坏而能通过规定次数、规定波形的电流峰值最大限度。
SPD残压:模拟雷电冲击电流通过SPD时,SPD端子间呈现的电压(其中采用MOV的限压型SPD,残压的大小与采用元件的直流1mA参考电压、元件的组合形式及所承受的雷电电流大小等参数有关)。
10/350s与8/20μs模拟雷电电流冲击波能量的比较:10/350μs是描述建筑物遭受直击雷时的模拟雷电电流冲击波,脉冲为10/350μs波形的电荷量约为8/20μs模拟雷电电流冲击波电荷量的20倍。即:
Q(10/35μs)≌20Q(8/20μs)
由于10/350μs模拟雷电电流冲击波的能量远大于8/20μs模拟雷电电流冲击波的能量,因此,一般需要使用电压开关型SPD(如放电间隙、放电管)才能承受10/350μs模拟雷电电流冲击波,而由MOV、SAD组成的SPD所承受的标称放电电流是8/20μs模拟雷电电流冲击波。
(3)SPD的功能要求
电源用SPD模块及SPD箱的功能既要满足SPD一般性能的需要,又要考虑环境集中监控对SPD性能监控的要求。另外,根据IECl643-1相关条文规定,用于电源配电系统、由MOV、SAD及滤波器组成的混合型SPD在国内外通信局(站)已经大量使用。
一般要求:SPD应根据雷电保护区分区原则,按照雷电保护区所在位置正确选用;SPD的残压并非是衡量SPD好坏的唯一指标,选择SPD应在同一测试指标下考虑SPD所选元器件的参数及元器件组合方式;SPD的选择应考虑通信局(站)遥信及监控的需要;用于交流系统的过压型SPD标称导通电压一般为Un=2.2U(U为运行工作电压的最大值);用于直流系统的过压型SPD标称导通电压一般为1.5U≥Un≥1.2U(U为运行直流工作电压的最大值)。功能要求:建在城市、郊区、山区等不同环境下的通信局(站),设计选用过压型SPD时,必须考虑通信局(站)供电电源的不稳定因素,对SPD的标称导通电压提出要求;通信局(站)采用的雷电过电压模块SPD,应具有以下功能:SPD模块损坏告警、遥信插孔、SPD模块替换、热容和过流保护;通信局(站)采用的雷电过电压保护电源避雷箱,应根据通信局(站)的具体情况,具有供电电压显示、SPD模块损坏告警、雷电记数、保险跳闸显示、备用SPD模块自动转换、遥信插孔、SPD模块替换、浪涌识别抑制器、热容和过流保护等功能,可根据用户要求进行选择。
SPD冲击通流容量的选择。单纯从价格的意义上讲,冲击通流容量较小的SPD的价格小于冲击通流容量大的SPD,但从技术经济比的角度去考虑问题,可能这一观点又有了新的含义,通流容量是指SPD不发生实质性破坏而能通过规定次数、规定波形的最大电流峰值,冲击通流容量较小的SPD在通过同样的雷电流的条件下其寿命远小于冲击通流容量大的SPD。根据有关资料介绍:“MOV元件在同样的模拟雷电流8/20μs、10kA测试条件下,通流容量为135kA的MOV的寿命为1000-2000次,通流容量为40kA的MOV的寿命为50次,两者寿命相差几十倍(据笔者分析,被测试的MOV元件可能是由小通流容量的MOV组合型的产品。但测试结论也可以说明,冲击通流容量较小的SPD在通过同样的雷电流的条件下其寿命远小于冲击通流容量大的SPD)”。由于配电室、电力室人口处的SPD要承受沿配电线路侵入的浪涌电流的主要能量,因此,其SPD在满足人口界面处标称放电电流要求的前提下,可根据情况选择较大通流容量的SPD。
2.5.2网络数据线雷电过电压保护器件的选择
(1)SPD标称导通电压:各类信号线、数据线、天馈线、计算机网络接口的SPD标称导通电压1.2U≥Un≤1.5U(U为额定工作电压的最大值),工作电流应满足系统的要求;
(2)各类SPD用元器件:各类信号线、数据线、天馈线、计算机网络接口的SPD元器件一般可有:陶瓷放电管、半导体放电管(SAD)、氧化锌压敏电阻(MOV)、PTC等元器件组成。陶瓷放电管的优点在于通流能力大,但响应速度慢,该器件主要用于非灵敏设备的保护。MOV的缺点主要是极间电容较大,不适合传输速率较快的快速以太网和ATM网络。SAD的广泛应用是由于响应速度快,极间电容界于放电管和MOV之间,缺点是通流能量小(其失效模式是短路接地,在信号回路中作为防雷使用是最好的选择)。
在满足信号传输速率及带宽的情况下,尽可能采用半导体放电管,半导体放电管有以下主要技术特征:
①对浪涌电压的响应速度非常快,与原有的保护单元相比,对陡峭的雷击电压可以充分抑制,使原来的保护单元多级保护设计变得简单,而且更加小型化;
②利用半导体内部的电子和空穴原理进行工作,不存在劣化问题,其保养简单,使用寿命增加,无须进行经常性保安单元放电管的检测工作;
③用硅PN结的工作原理设计的半导体放电管,其双向、单向开关动作均能自由精确设计,一致性较好;
④半导体放电管既适用于普通电话的300-3400Hz模拟传输,又适用于ISDN的2B D数字传输(MDF配线架国内基本上采用由放电管作为雷电的过电压保护器件,随着程控交换机在国内的普及,程控交换机内集成化程度不断提高及控制方式不断更新,程控交换机内部使用的器件要求具备高速率、宽频带、可靠性强等特点,现代化程控交换机需要与之特点相适应的保安单元。因此,原有放电管式的保安单元已经不可能有效地保护程控交换机的安全运行,现阶段半导体放电管是取代现有气体放电管保护电话交换机和用户终端设备抗雷电电涌理想的器件。为此,国外已经大量采用固体放电管SAD组成的保安单元)。
,智能化大厦综合布线系统的防雷与接地
(5)监控系统的云台、防雨罩必须就近接地。
2.5 PDS雷电过电压保护器件的选择
2.5.1 配电系统的雷电过电压保护器件的选择
(1)电源用雷电过电压保护器件的选择,雷电过电压保护器件包括:
浪涌保护器的分类:根据IECl312-1(通则)、IEC-1312-3(浪涌保护器的要求)、IECl643-2(低压系统的浪涌保护器)及ITU-TK36(保护装置的选择),浪涌保护器(SurgeProtectiveDevices简称SPD)可由气体放电管、放电间隙、MOV、SAD、齐纳二极管、滤波器、保险丝等元件混合组成。国内外各种类型SPD产品一般都由这些元器件组成。浪涌保护器可分为三类:电压开关型SPD(Voltage Wwitehing Type SPD); 限压型SPD (Voltage LimitingTypeSPD);组合型SPD(CombinationTypeSPD)。
雷击电流型SPD(归属于电压开关型SPD类):是安装在通信局(站)建筑物外雷电保护区0区的SPD,可最大限度地消除电网后续电流,以疏导10/350μs的模拟雷电冲击电流(无论这些电流是远处的雷电过电压还是由直击雷引起的)。雷击电流型SPD一般由高性能火花隙组成,它的特点是放电能力强,但残压较高,通常为2000~4000V,检验测试器件采用一般10/350μs的模拟雷电冲击电流波型。
限压型SPD:限压型SPD一般由氧化锌压敏电阻 (MOV)及半导体放电管(SAD)等元器件组成,是安装在雷电保护区建筑物内的SPD,可疏导8/20μs的模拟雷电冲击电流,在过电压保护中具有逐级限制雷电过电压的功能,检验测试器件的残压一般采用8/20μs的模拟雷电冲击电流波型。
混合型电源SPD:半导体放电管(SAD)与MOV组成的混合型电源SPD。
半导体放电管主要技术特征包括:对浪涌电压的响应速度非常快,与原有的保护单元相比,对陡峭的雷击电压可以充分抑制,这样使原来的保护单元多级保护设计变得简单,而且更加小型化;利用半导体内部的电子和空穴原理进行工作,不存在劣化问题,保养简单,使用寿命增加;用硅PN结的工作原理设计半导体放电管,其双向、单向、开关动作均能自由、精确地设计出来,一致性较好。因此,采用半导体放电管(SAD)与MOV组成的混合型电源SPD,可能利用SAD对浪涌电压的响应速度非常快等特点,在一般雷电过电压的保护时,由SAD承受浪涌电流,其标称放电电流可达10~20kA;若遇到较大量级的雷电过电压,第一级由SAD组成的电路保险管可自动断开,由第二级MOV作为雷电过电压保护,作为混合型电源SPD,其MOV能承受冲击通流能量一般大于100kA。
MOV与滤波器组成的混合型电源SPD:根据一个典型的沿配电线路侵入的雷电波,其浪涌波形是符合傅立叶变换的,其大部分能量分量具有相对较低的频率,采用MOV与滤波器组成的混合型电源SPD在同一测试条件下,可以具有比单一并联的SPD更低的残压。RFI滤波器可对150kHz~20MHz的雷电波进行滤波;标称放电电流40kA时残压可小于1000V。
(2)SPD技术参数和名称术语:
标称导通电压:在施加恒定直流lmA电流的情况下,MOV启始动作电压。
SPD的标称放电电流:用来划分SPD等级,具有8/20μs、10/350μs模拟雷电电流冲击波的放电电流。
冲击通流容量:SPD不发生实质性破坏而能通过规定次数、规定波形的电流峰值最大限度。
SPD残压:模拟雷电冲击电流通过SPD时,SPD端子间呈现的电压(其中采用MOV的限压型SPD,残压的大小与采用元件的直流1mA参考电压、元件的组合形式及所承受的雷电电流大小等参数有关)。
10/350s与8/20μs模拟雷电电流冲击波能量的比较:10/350μs是描述建筑物遭受直击雷时的模拟雷电电流冲击波,脉冲为10/350μs波形的电荷量约为8/20μs模拟雷电电流冲击波电荷量的20倍。即:
Q(10/35μs)≌20Q(8/20μs)
由于10/350μs模拟雷电电流冲击波的能量远大于8/20μs模拟雷电电流冲击波的能量,因此,一般需要使用电压开关型SPD(如放电间隙、放电管)才能承受10/350μs模拟雷电电流冲击波,而由MOV、SAD组成的SPD所承受的标称放电电流是8/20μs模拟雷电电流冲击波。
(3)SPD的功能要求
电源用SPD模块及SPD箱的功能既要满足SPD一般性能的需要,又要考虑环境集中监控对SPD性能监控的要求。另外,根据IECl643-1相关条文规定,用于电源配电系统、由MOV、SAD及滤波器组成的混合型SPD在国内外通信局(站)已经大量使用。
一般要求:SPD应根据雷电保护区分区原则,按照雷电保护区所在位置正确选用;SPD的残压并非是衡量SPD好坏的唯一指标,选择SPD应在同一测试指标下考虑SPD所选元器件的参数及元器件组合方式;SPD的选择应考虑通信局(站)遥信及监控的需要;用于交流系统的过压型SPD标称导通电压一般为Un=2.2U(U为运行工作电压的最大值);用于直流系统的过压型SPD标称导通电压一般为1.5U≥Un≥1.2U(U为运行直流工作电压的最大值)。功能要求:建在城市、郊区、山区等不同环境下的通信局(站),设计选用过压型SPD时,必须考虑通信局(站)供电电源的不稳定因素,对SPD的标称导通电压提出要求;通信局(站)采用的雷电过电压模块SPD,应具有以下功能:SPD模块损坏告警、遥信插孔、SPD模块替换、热容和过流保护;通信局(站)采用的雷电过电压保护电源避雷箱,应根据通信局(站)的具体情况,具有供电电压显示、SPD模块损坏告警、雷电记数、保险跳闸显示、备用SPD模块自动转换、遥信插孔、SPD模块替换、浪涌识别抑制器、热容和过流保护等功能,可根据用户要求进行选择。
SPD冲击通流容量的选择。单纯从价格的意义上讲,冲击通流容量较小的SPD的价格小于冲击通流容量大的SPD,但从技术经济比的角度去考虑问题,可能这一观点又有了新的含义,通流容量是指SPD不发生实质性破坏而能通过规定次数、规定波形的最大电流峰值,冲击通流容量较小的SPD在通过同样的雷电流的条件下其寿命远小于冲击通流容量大的SPD。根据有关资料介绍:“MOV元件在同样的模拟雷电流8/20μs、10kA测试条件下,通流容量为135kA的MOV的寿命为1000-2000次,通流容量为40kA的MOV的寿命为50次,两者寿命相差几十倍(据笔者分析,被测试的MOV元件可能是由小通流容量的MOV组合型的产品。但测试结论也可以说明,冲击通流容量较小的SPD在通过同样的雷电流的条件下其寿命远小于冲击通流容量大的SPD)”。由于配电室、电力室人口处的SPD要承受沿配电线路侵入的浪涌电流的主要能量,因此,其SPD在满足人口界面处标称放电电流要求的前提下,可根据情况选择较大通流容量的SPD。
2.5.2网络数据线雷电过电压保护器件的选择
(1)SPD标称导通电压:各类信号线、数据线、天馈线、计算机网络接口的SPD标称导通电压1.2U≥Un≤1.5U(U为额定工作电压的最大值),工作电流应满足系统的要求;
(2)各类SPD用元器件:各类信号线、数据线、天馈线、计算机网络接口的SPD元器件一般可有:陶瓷放电管、半导体放电管(SAD)、氧化锌压敏电阻(MOV)、PTC等元器件组成。陶瓷放电管的优点在于通流能力大,但响应速度慢,该器件主要用于非灵敏设备的保护。MOV的缺点主要是极间电容较大,不适合传输速率较快的快速以太网和ATM网络。SAD的广泛应用是由于响应速度快,极间电容界于放电管和MOV之间,缺点是通流能量小(其失效模式是短路接地,在信号回路中作为防雷使用是最好的选择)。
在满足信号传输速率及带宽的情况下,尽可能采用半导体放电管,半导体放电管有以下主要技术特征:
①对浪涌电压的响应速度非常快,与原有的保护单元相比,对陡峭的雷击电压可以充分抑制,使原来的保护单元多级保护设计变得简单,而且更加小型化;
②利用半导体内部的电子和空穴原理进行工作,不存在劣化问题,其保养简单,使用寿命增加,无须进行经常性保安单元放电管的检测工作;
③用硅PN结的工作原理设计的半导体放电管,其双向、单向开关动作均能自由精确设计,一致性较好;
④半导体放电管既适用于普通电话的300-3400Hz模拟传输,又适用于ISDN的2B D数字传输(MDF配线架国内基本上采用由放电管作为雷电的过电压保护器件,随着程控交换机在国内的普及,程控交换机内集成化程度不断提高及控制方式不断更新,程控交换机内部使用的器件要求具备高速率、宽频带、可靠性强等特点,现代化程控交换机需要与之特点相适应的保安单元。因此,原有放电管式的保安单元已经不可能有效地保护程控交换机的安全运行,现阶段半导体放电管是取代现有气体放电管保护电话交换机和用户终端设备抗雷电电涌理想的器件。为此,国外已经大量采用固体放电管SAD组成的保安单元)。
,智能化大厦综合布线系统的防雷与接地
上一篇:住宅建筑物防雷等级的分类